ClickCease
+ 1-915-850-0900 spinedoctors@gmail.com
Select Page

Ya Epigenetic

Tîma Bijîjkî ya Fonksiyonel a Epigenetîka Vegerê ya Klînîkê. Lêkolîna guheztinên mîras ên di vegotina genê de (jenên çalak li hember genên neçalak) bi guheztinên rêza ADN-ê re têkildar nabe, guherînek di fenotîpê de bêyî guhertinek di genotipê de, ku bandorê li xwendina şaneyan dike. Guherînek epigenetîk bûyerek birêkûpêk, xwezayî ye ku dikare ji hêla çend faktoran ve jî bandor bibe: temen, hawîrdor, şêwaza jiyanê û rewşa nexweşiyê. Guhertinên epigenetîk bi gelemperî dikarin wekî şaneyên termînalê di nav hucreyên çerm, xaneyên kezebê, şaneyên mêjî, hwd de cûda bibin. Û guhertina epigenetîk dikare bandorên zirardartir hebe ku dikare bibe sedema nexweşiyan.

Lêkolînên nû û domdar bi domdarî rola epigenetîkê di cûrbecûr nexweşiyên mirovî û nexweşiyên kujer de vedibêjin. Nîşanên epigenetîk di dema mezinan de aramtir in. Lêbelê, ew hîn jî têne fikirîn ku ji hêla vebijarkên şêwaza jiyanê û bandora hawîrdorê ve dînamîk û guhezbar in. Eşkere dibe ku bandorên epigenetîk ne tenê di malzarokê de, lê di seranserê jiyana mirovî de pêk tê. Vedîtinek din jî ev e ku guhertinên epigenetîk dikarin berevajî bibin. Gelek mînakên epigenetîk destnîşan dikin ka bijartinên şêwaza jiyanê û rûdanên hawîrdorê çawa dikarin nîşaneyên li ser DNA biguhezînin û di diyarkirina encamên tenduristiyê de rolek bilîzin.


Tenduristiya Genetîk-Epigenetic û Xweseriya me | El Paso, TX

Tenduristiya Genetîk-Epigenetic û Xweseriya me | El Paso, TX

Tenduristî û xwarinê kesane çawa dihatin tendurustiya herî baş?

Piraniya me di derbarê xwarinên bêhêzî de bizanin ka çawa cesareta me dike? Ew

  • Çepê Metabolîzmê
  • Weight Add
  • Pevçûn û hişk
tedawiya tenduristiya epigenetîk el paso tx.

Lê niha nuha xwarin û elementên xwarin hene ku dikare di rê de alîkarî bikin û ji cîhê ku em ne ji ramana me, û ew DNA e, tê.

Nutriepigenomics têkiliyên di navbera xwarin û biogarkeran de lêkolîn dikin ku ji DNA ve girêdayî an vebirinê vekin. Ev cinsên xwe li ser an jî veguherîne.

Lêkolînên nû têne nîşandan xwarin an xwarinê dikare têgezkirina jenên me, ku dikare tenduristiya xwe bandor bike.

Genomeya giyanî têkoşîna hemî dermanên klînîk û gelemperî tedbîra tenduristiyê dike:

Diet, xebitandinê, û pêşniyara hawirdorê her tiştên ku di jîndanê de guherînan de li ser û zîndanê re rolek nîşan da. Hêzên faktorên lênêrîna karûbarên lênêrînê dikare dikare potansîyona ku nexweşiya kêm bikin û bandorek erênî li ser tendurustiya me heye.

Pisporên tendurustî Ji hemûyan ve dest pê dike ku epigenetics bi karanîna armancên xwe vebikin ku planên bêhtir taybetmendî û takekesî pêşkêş dikin.

pisporê pisporê paşê

Kristy Hall, MS, RNCP, ROHP, pisporê xurekiya fonksiyonel û pejirandî ya lijneyê, got: �Agahiyên qat ên wekî parêz, şêwaza jiyanê, faktorên hawîrdorê, dîroka malbatê, nîşanan, û teşhîs ligel epigenetîk dikare bibe alîkar ku kesek berbi rewşek tenduristiya xweşbîn ve bibe alîkar. damezrînerê Living Well Nutrition ku ceribandina epigenetîk, şêwirmendiya xurek, û nêzîkatiyek piralî bikar tîne da ku ji xerîdarên xwe çêtir peyda bike.


Bila 15, 2018Bailey Kirkpatrick ParêzNexweşî & BêserûberîDorNûçe & Nirxandin
stratejiyên xwarinî

Xwarinên qeydkirî hene ku derfetên ku genetîkî bi pêşniyarên xwarinê ve girêdayî ye ku dikare tendurustiya mirovî çêtir bikin.

Xurek ji hêla faktorên hawirdora yekem e ku tendurustiya me diyar dike. Nexweşiyên demjimêr hene

  • Tîpa 2 diyabetê
  • Syndrome Metabolic
  • Nexweşiya cardiovascular
  • Nexweşiya neurolojî
  • Kanserên Gelek
  • Bi xwarinê / xwarinê ve hatî destpêkirin an zûtir kirin

Ev qada lêkolînê ya nutritional dikare dikare wekî wekî Gen Genomics Nerastkirin.

Polymorphîzma yek nucleotide (SNPs) DNA di nav DNA-yekane de cudahiyên yekane-yek in. Ew nûneriya bingehîn ya guhertina genetîkî nîşan dide.

Dna SNP

Molekuliya DNA ya ji molekola DNA-yê de li cihê yekane-bayek yekane (cudahî pirrjimaroka C / A)

Genetîk û nutrigeneticsên xwarinî hene nasnameyê, kategoriyê, û taybetmendiyê guhertina genetîkî ya ku metabolîzma nutriyalîzmê / karanîna û tengahîkirina xwarinên Fig1 biguherîne.

tedawiya tenduristiya epigenetîk el paso tx.
IOM Nutrigenomics û derveyî: Pêşerojkirina agahdarî. Washington, DC: Nûnerê Neteweyî Neteweyên Yekbûyî; 2007.

Serlêdan: Jenetîk & Epîgenetîk

Nutriyan, wek nimûne, Dermanan, bandorên hêzdar ên genenîf û gihengiya genome hene, û têkiliyên van gene-nutrient dikare ji bo pêşîlêgirtina nexweşî.

tedawiya tenduristiya epigenetîk el paso tx.

Nutrition

Sozdariya endezyariyê ya ji bo tendurustiya herî baş hîn jî berdewam dike, lê gelî hêviyên erênî ye, wekî ku ji hêla bikaranîna xwarinên diranan.

Lêkolînek zanistî nîşan dide ku nutriyan di xwarinên cûda û xwarinên ku em bixwin, dibe ku dibe ku biguhere guhertinên xwe yên xweş bikin. Ev belgeyên ku di hilbijartinên jiyanê de çêtirîn çêtirîn bikar bînin.

Bûz di nav antîoksîdan de pir zêde ye û tê fikirîn ku ev "superxwarin" dikare bi epigenetîk zirara DNA kêm bike, bi vî rengî mirovan li dijî penceşêrê diparêze û dibe ku pîrbûnê jî hêdî bike. Ava şîn û vîtamîna C ji bo gena MTHFR û gena DNMT1 di mirovan de wekî astengkerên metilasyonê yên potansiyel hatine destnîşan kirin.


Kim, M., Na, H., Kasai, H., Kawai, K., Li, Y.-S., & Yang, M. (2017). Berawirdkirina Blueberry (Vaccinium spp.) û Vîtamîn C bi Bandorên Antîoxidative û Epigenetîk ên Di Mirovan de. Kovara Pêşîlêgirtina Penceşêrê, 22 (3), 174-181.

Em di derbarê ku em dixwin û çi dike, ew bedena me dike, bi taybetî bi potansiyona epigenetîk potansî, tenê yek pêngavek nêziktirîn tendurustiya herî baş e.

Roja Serokên Epîpîkolojî Di Pêwîstanê û Metabolê de

Roja Serokên Epîpîkolojî Di Pêwîstanê û Metabolê de

Kurteya Epigenetîk:

Zêdebûna belavbûna qelewbûn û nexweşiyên têkildar pirsgirêkek tenduristiya gelemperî ya sereke ye. Digel ku faktorên genetîkî bê guman di destnîşankirina hestiyariya kesane ya ji zêdebûna giranî û qelewbûnê de rolek dileyzin, vebijarkên genetîkî yên naskirî tenê beşek cûdabûnê rave dikin. Vê yekê rê li ber eleqeyek mezin di têgihiştina rola potansiyela epigenetîkê de wekî navbeynkarek danûstendinên gen-hawirdorê ya ku di binê pêşkeftina qelewbûnê û hevgirêdanên wê de ye. Delîlên destpêkê ji bo piştgirîkirina rola epigenetîkê di qelewbûn û şekirê şekir 2 (T2DM) de bi piranî ji hêla lêkolînên heywanan ve hate peyda kirin, ku guhertinên epigenetîk ên di tevnên girîng ên metabolîkî de li dû xwarina zêde rûn û cûdahiyên epigenetîk ên di navbera heywanên qelew û qelew de û ji hêla lêkolînên mirovî yên ku di mirovên qelew / diyabetîk de guhertinên epigenetîk di qelewbûn û genên namzetê T2DM de destnîşan kirin. Di van demên dawî de, pêşkeftinên di metodolojiyên epigenetîk de û lêçûna kêm a lêkolînên komeleyê yên li seranserê epigenome (EWAS) rê li ber berfirehbûna bilez a lêkolînan di nifûsa mirovan de girt. Van lêkolînan di heman demê de cûdahiyên epigenetîk ên di navbera mezinên qelew / T2DM û kontrolên saxlem û guheztinên epigenetîk de yên ku bi tevlêbûna xwarin, kêmkirina giraniyê, û destwerdanên werzîşê re têne ragihandin. Di heman demê de hem ji lêkolînên mirov û hem jî ji heywanan delîlên zêde hene ku têkiliya di navbera rûxandina xwarina perinatal û xetereya paşerojê ya qelewbûn û T2DM de dibe ku ji hêla guherînên epigenetîk ên di nebatan de were navber kirin. Armanca vê vekolînê ev e ku kurte pêşkeftinên herî dawî di vê qada bilez de, bi baldarîyek taybetî li ser EWAS-ya mirovî û lêkolînên ku li ser bandora faktorên xurek û şêwaza jiyanê (hem berî- û hem jî piştî zayînê) li ser epigenome û têkiliya wan bi metabolê re lêkolîn dikin. encamên tenduristiyê. Zehmetiyên di veqetandina encamê ji sedemîtiyê de di van lêkolînan de û rola krîtîk a modelên heywanan ji bo ceribandina têkiliyên sedemî û peydakirina têgihiştinê di mekanîzmayên bingehîn de jî têne destnîşan kirin. Bi kurtahî, qada epigenetîk û tenduristiya metabolîk di demek kurt de pêşkeftinên bilez dîtiye. Digel ku encamên heya îro sozdar in, lêkolîn berdewam in, û deh salên pêş de soz dide ku bibe demek lêkolînek hilberîner li ser danûstendinên tevlihev ên di navbera genom, epigenom û hawîrdorê de ji ber ku ew bi nexweşiya metabolîk ve girêdayî ne.

Keywords: Epigenetics, methylation DNA, Obesity, Tîpa 2 şekir, Bernameya Pêşveçûn

Pêşkêş

Mekanîzmayên EpigenetîkQelewbûn nexweşiyek tevlihev, pir-faktorî ye, û baştir têgihiştina mekanîzmayên ku di bin danûstendinên di navbera şêwaza jiyanê, hawîrdor û genetîkê de ne, ji bo pêşxistina stratejiyên bi bandor ji bo pêşîgirtin û dermankirinê girîng e [1].

In a society where energy-dense food is plentiful and the need for physical activity is low, there is a wide variation in individuals� susceptibility to develop�obesity and metabolic health problems. Estimates of the role of heredity in this variation are in the range of 40�70 %, and while large genome-wide association studies (GWAS) have identified a number of genetic loci associated with obesity risk, the ~100 most common genetic variants only account for a few percent of variance in obesity [2, 3]. Genome-wide estimates are higher, accounting for ~20 % of the variation [3]; however, a large portion of the heritability remains unexplained.

Recently, attention has turned to investigating the role of epigenetic changes in the etiology of obesity. It has been argued that the epigenome may represent the mechanistic link between genetic variants and environmental�factors in determining obesity risk and could help explain the �missing heritability.� The first human epigenetic studies were small and only investigated a limited number of loci. While this generally resulted in poor reproducibility, some of these early findings, for instance the relationship between PGC1A methylation and type 2 diabetes mellitus (T2DM) [4] and others as discussed in van Dijk et al. [5], have been replicated in later studies. Recent advances and increased affordability of high- throughput technologies now allow for large-scale epigenome wide association studies (EWAS) and integration of different layers of genomic information to explore the complex interactions between the genotype, epigenome, transcriptome, and the environment [6�9]. These studies are still in their infancy, but the results thus far have shown promise in helping to explain the variation in obesity susceptibility.

There is increasing evidence that obesity has develop mental origins, as exposure to a suboptimal nutrient supply before birth or in early infancy is associated with an increased risk of obesity and metabolic disease in later life [10�13]. Initially, animal studies demonstrated that a range of early life nutritional exposures, especially those experienced early in gestation, could induce epigenetic changes in key metabolic tissues of the offspring that persisted after birth and result in permanent alterations in gene function [13�17]. Evidence is emerging to support the existence of the same mechanism in humans. This has led to a search for epigenetic marks present early in life that predict later risk of metabolic disease, and studies to determine whether epigenetic programming of metabolic disease could be prevented or reversed in later life.

Ev vekolîn nûvekirinek meya sîstematîk a berê ya lêkolînên li ser epigenetîk û qelewbûnê di mirovan de peyda dike [5]. Vekolîna meya berê encamên hêvîdar ên lêkolînên destpêkê destnîşan kir, di nav de yekem nîşanên epigenetîk ên potansiyel ên qelewbûnê yên ku dikarin di zayînê de werin tespît kirin (mînak, RXRA) [18]. Lêbelê, wê di heman demê de dubarebûna tixûbdar a dîtinan û nebûna vekolînên dirêj ên pîvanê jî ronî kir. Vekolîna heyî balê dikişîne ser pêşkeftinên vê dawiyê yên di vê qada bilez de û, nemaze, li ser EWAS-a mirovî û lêkolînên ku li ser bandora (pêş- û piştî zayînê) faktorên xwarin û şêwaza jiyanê li ser epigenome û rola xuyang a epigenetîkê di patholojiya qelewbûnê de lêkolîn dikin. . Em her weha di van lêkolînan de zehmetiyên di tespîtkirina sedemîtiyê de û girîngiya modelên heywanan di peydakirina têgihiştina mekanîzmayan de vedibêjin.

Axaftin

Guhertinên Epigenetîk Di Modelên Heywanan ên Qelewbûnê de

kêvroşk xwarinAnimal models provide unique opportunities for highly controlled studies that provide mechanistic insight into�the role of specific epigenetic marks, both as indicators of current metabolic status and as predictors of the future risk of obesity and metabolic disease. A particularly important aspect of animal studies is that they allow for the assessment of epigenetic changes within target tissues, including the liver and hypothalamus, which is much more difficult in humans. Moreover, the ability to harvest large quantities of fresh tissue makes it possible to assess multiple chromatin marks as well as DNA methylation. Some of these epigenetic modifications either alone or in combination may be responsive to environmental programming. In animal models, it is also possible to study multiple generations of offspring and thus enable differentiation between trans-generational and intergenerational transmission of obesity risk mediated by epigenetic memory of parental nutritional status, which cannot be easily distinguished in human studies. We use the former term for meiotic transmission of risk in the absence of continued exposure while the latter primarily entails direct transmission of risk through metabolic reprogramming of the fetus or gametes.

Animal studies have played a critical role in our current understanding of the role of epigenetics in the developmental origins of obesity and T2DM. Both increased and decreased maternal nutrition during pregnancy have been associated with increased fat deposition in offspring of most mammalian species studied to date (reviewed in [11, 13�15, 19]). Maternal nutrition during pregnancy not only has potential for direct effects on the fetus, it also may directly impact the developing oocytes of female fetuses and primordial germ cells of male fetuses and therefore could impact both the off- spring and grand-offspring. Hence, multigenerational data are usually required to differentiate between maternal intergenerational and trans-generational transmission mechanisms.

Tablo 1 cûrbecûr modelên heywanan ên ku hatine bikar anîn ji bo peydakirina delîlên guheztinên metabolîk û epigenetîk ên di dûndanan de ku bi plana dêûbavî ya xwarinê ve girêdayî ne kurt dike. Ew di heman demê de agahdariya têkildarî lêkolînên ku nîşanên epigenetîk ên guheztin di mirovên mezin de yên ku rastî pirsgirêkên xwarinê yên rasterast têne nas kirin jî vedihewîne. Tablo ji hêla celebê veguhestina xetereyê ve hatî pêşniyar kirin.

maseya 1(i) Guhertinên Epigenetîk ên Di Zarokan de Bi Xwarina Dayikê re Di Di Ducaniyê de

Maternal nutritional supplementation, undernutrition, and over nutrition during pregnancy can alter fat deposition and energy homeostasis in offspring [11, 13�15, 19]. Associated with these effects in the offspring are changes in DNA methylation, histone post-translational modifications, and gene expression for several target genes,�especially genes regulating fatty acid metabolism and insulin signaling [16, 17, 20�30]. The diversity of animal models used in these studies and the common metabolic pathways impacted suggest an evolutionarily conserved adaptive response mediated by epigenetic modification. However, few of the specific identified genes and epigenetic changes have been cross-validated in related studies, and large-scale genome-wide investigations have typically not been applied. A major hindrance to comparison of these studies is the different develop mental windows subjected to nutritional challenge, which may cause considerably different outcomes. Proof that the epigenetic changes are causal rather than being associated with offspring phenotypic changes is also required. This will necessitate the identification of a parental nutritionally induced epigenetic �memory� response that precedes development of the altered phenotype in offspring.

(ii) Bandorên Xwarina Bav li ser Nîşanên Epigenetîk ên Neslê

zarok di xew de destê hev girtinEmerging studies have demonstrated that paternal plane of nutrition can impact offspring fat deposition and epigenetic marks [31�34]. One recent investigation using mice has demonstrated that paternal pre-diabetes leads to increased susceptibility to diabetes in F1 offspring with associated changes in pancreatic gene expression and DNA methylation linked to insulin signaling [35]. Importantly, there was an overlap of these epigenetic changes in pancreatic islets and sperm suggesting germ line inheritance. However, most of these studies, although intriguing in their implications, are limited in the genomic scale of investigation and frequently show weak and somewhat transient epigenetic alterations associated with mild metabolic phenotypes in offspring.

(iii) Guhertinên Epigenetîk ên Veguhastî yên Potansiyel Ku Depokirina Qelewiyê Di Zarokan de Pêşde Dike

xwarina zêdeVeguheztina stabîl a agahdariya epigenetîk di nav gelek nifşan de di pergalên nebat û C de baş tê vegotin. elegans, but its significance in mammals is still much debated [36, 37]. An epigenetic basis for grand- parental transmission of phenotypes in response to dietary exposures has been well established, including in livestock species [31]. The most influential studies demonstrating effects of epigenetic transmission impacting offspring phenotype have used the example of the viable yellow agouti (Avy) mouse [38]. In this mouse, an insertion of a retrotransposon upstream of the agouti gene causes its constitutive expression and consequent yellow coat color and adult onset obesity. Maternal transmission through the germ line results in DNA methylation�mediated silencing of agouti expression resulting in wild-type coat color and lean phenotype of the offspring [39, 40]. Importantly, subsequent studies in these mice demonstrated that maternal exposure to methyl donors causes a shift in coat color [41]. One study has reported transmission of a phenotype to the F3 generation and alterations in expression of large number of genes in response to protein restriction in F0 [42]; however, alterations in expression were highly variable and a direct link to epigenetic changes was not identified in this system.

(iv) Raberkirina Rasterê ya Kesan Ji Xwarina Zêde Di Jiyana Piştî Zayînê de

jiyana modern ya rojavayîDigel ku gelek lêkolînan di modelên heywanan de guherînên epîgenetîk ên girêdayî parêzê bi karanîna deverên berendam-malpera-taybet bikar tînin nas kirin, çend analîzên li seranserê genomê hatine kirin. Lêkolînek vê dawîyê balê dikişîne ser destnîşankirina bandora epigenetîk a rasterast a parêzên rûn-rûn / qelewbûna ji ber parêzê di mêşên mezin de ku bi karanîna îfadeya genê ya berfireh a genomê û analîzên methylasyona DNA [43]. Vê lêkolînê 232 herêmên cuda yên methylated (DMRs) di adipocytes de ji mêşên kontrol û bi rûn ên zêde têne xwarin nas kirin. Ya girîng, deverên mirovî yên têkildar ên ji bo DMR-yên mûşê jî di tevna rûnê de ji nifûsa mirovên qelew û bêhêz bi rengekî cihêreng hatin methylated kirin, bi vî rengî parastina pêşveçûna berbiçav a van herêman ronî dike. Ev encam girîngiya muhtemel a DMR-yên naskirî di birêkûpêkkirina homeostaza enerjiyê de di mammalan de tekez dike.

Lêkolînên Mirovan

Anatomiya modela 3D

Li ser delîlên ji lêkolînên heywanan û bi zêdebûna hebûna amûrên erzan ên ji bo analîza genome-yê berfireh, lêkolînên epigenome di mirovan de bi lez berfireh bûye. Van lêkolînan bi piranî li ser naskirina cûdahiyên cihê-taybet ên di metilasyona DNA de ku bi fenotîpên metabolîk ve girêdayî ne, sekinîne.

Pirseke sereke ev e ku guheztinên epigenetîk çiqasî beşdarî pêşkeftina fenotîpa metabolîk dibe, ne ku tenê encamek wê be (Hêjîr. 1). Bernamekirina epigenetîk dikare di pêşkeftina qelewbûnê de bibe alîkar, û her weha di encama xetereya pirsgirêkên dil û vaskuler û metabolîk de rolek bilîze. Di lêkolînên mirovî de, îsbatkirina sedemîtiyê dijwar e [44], lê ji çend rêzikên delîlan encam têne çêkirin:

1 fig(i) Lêkolînên komeleya genetîkî. Genetic polymorphisms that are associated with an increased risk of developing particular conditions are a priori linked to the causative genes. The presence of differential�methylation in such regions infers functional relevance of these epigenetic changes in controlling expression of the proximal gene(s). There are strong cis-acting genetic effects underpinning much epigenetic variation [7, 45], and in population-based studies, methods that use genetic surrogates to infer a causal or mediating role of epigenome differences have been applied [7, 46�48]. The use of familial genetic information can also lead to the identification of potentially causative candidate regions showing phenotype-related differential methylation [49].

(ii) Dema guherînên epigenetîk. Hebûna nîşanek epigenetîk berî pêşkeftina fenotîpek taybetmendiyek bingehîn e ku bi sedemîtiyê ve girêdayî ye. Berevajî vê, hebûna nîşanekê di pêwendiya bi qelewbûnê de, lê ne berî pêşkeftina wê, dikare were bikar anîn da ku sedemîtiyê derxîne lê dê rolek mimkun di patholojiya paşerojê ya bi qelewbûnê de nehêle.

(iii) Encama maqûl a mekanîzmayê. Ev behsa guhertinên epigenetîk ên ku bi vegotina guhezbar a genan re bi rolek sazkirî di rêzikkirina fenotîpa berjewendiyê ve girêdayî ne. Nimûneyek weha têkiliya methylasyonê li du cîhên CpG yên li gena CPT1A bi astên trîglîserîdên gerîdok re ye [50]. CPT1A carnitine palmitoyltransferase 1A, enzîmek ku di metabolîzma asîda rûnê de rolek navendî heye, kod dike, û ev yek bi tundî destnîşan dike ku metilasyona cûda ya vê genê dibe ku bi sedema guherînên di asta trîglîserîdên plazmayê de têkildar be.

Lêkolînên Komeleya Berfireh-Epigenome: Naskirina Biyomarkerên Epigenetîk ên Tenduristiya Metabolîk

A number of recent investigations have focused on exploring associations between obesity/metabolic diseases�and DNA methylation across the genome (Table 2). The largest published EWAS so far, including a total of 5465 individuals, identified 37 methylation sites in blood that were associated with body mass index (BMI), including sites in CPT1A, ABCG1, and SREBF1 [51]. Another large-scale study showed consistent associations between BMI and methylation in HIF3A in whole blood and adipose tissue [52], a finding which was also partially replicated in other studies [9, 51]. Other recently reported associations between obesity-related measures and DNA methylation include (i) DNA methylation differences between lean and obese individuals in LY86 in blood leukocytes [53]; (ii) associations between PGC1A promoter methylation in whole blood of children and adiposity 5 years later [54]; (iii) associations between waist-hip ratio and ADRB3 methylation in blood [55]; and (iv) associations between BMI, body fat distribution measures, and multiple DNA methylation sites in adipose tissue [9, 56]. EWAS have also shown associations between DNA methylation sites and blood lipids [55, 57�59], serum metabolites [60], insulin resistance [9, 61], and T2DM [48, 62, 63] (Table 2).

tabloya 2 berdewamJi van lêkolînan, metilasyona guhêrbar a PGC1A, HIF3A, ABCG1, û CPT1A û RXRA-ya ku berê hatî destnîşan kirin [18] wekî biyomarkerên ku bi tenduristiya metabolîk ve girêdayî ne, an jî dibe ku pêşbîniya wê, derketin holê ku di heman demê de berendamên maqûl in ji bo rola di pêşkeftina nexweşiya metabolîk de. .

Têkiliya Di Navbera Genotype Û Epigenome de

Genotype EpigenomeEpigenetic variation is highly influenced by the underlying genetic variation, with genotype estimated to explain ~20�40 % of the variation [6, 8]. Recently, a number of studies have begun to integrate methylome and genotype data to identify methylation quantitative trait loci (meQTL) associated with disease phenotypes. For instance, in adipose tissue, an meQTL overlapping�with a BMI genetic risk locus has been identified in an enhancer element upstream of ADCY3 [8]. Other studies have also identified overlaps between known obesity and T2DM risk loci and DMRs associated with obesity and T2DM [43, 48, 62]. Methylation of a number of such DMRs was also modulated by high-fat feeding in mice [43] and weight loss in humans [64]. These results identify an intriguing link between genetic variations linked with disease susceptibility and their association with regions of the genome that undergo epigenetic modifications in response to nutritional challenges, implying a causal relationship. The close connection between genetic and epigenetic variation may signify their essential roles in generating individual variation [65, 66]. However, while these findings suggest that DNA methylation may be a mediator of genetic effects, it is also important to consider that both genetic and epigenetic processes could act independently on the same genes. Twin studies [8, 63, 67] can provide important insights and indicate that inter-individual differences in levels of DNA methylation arise predominantly from non-shared environment and stochastic influences, minimally from shared environmental effects, but also with a significant impact of genetic variation.

Bandora Jîngeha Berî Zayînê û Piştî Zayînê li ser Epigenome

modela fetusJîngeha berî zayînê: Two recently published studies made use of human populations that experienced �natural� variations in nutrient supply to study the impact of maternal nutrition before or during pregnancy on DNA methylation in the offspring [68, 69]. The first study used a Gambian mother-child cohort to show that both seasonal variations in maternal methyl donor intake during pregnancy and maternal pre-pregnancy BMI were associated with altered methylation in the infants [69]. The second study utilized adult offspring from the Dutch Hunger Winter cohort to investigate the effect of prenatal exposure to an acute period of severe maternal undernutrition on DNA methylation of genes involved in growth and metabolism in adulthood [68]. The results highlighted the importance of the timing of the exposure in its impact on the epigenome, since significant epigenetic effects were only identified in individuals exposed to famine during early gestation. Importantly, the epigenetic changes occurred in conjunction with increased BMI; however, it was not possible to establish in this study whether these changes were present earlier in life or a consequence of the higher BMI.

Other recent studies have provided evidence that prenatal over-nutrition and an obese or diabetic maternal environment are also associated with DNA methylation changes in genes related to embryonic development, growth, and metabolic disease in the offspring [70�73].

Digel ku daneyên mirovî kêm in, nîşan hene ku qelewbûna bav û kalan dikare bibe sedema guheztina metilasyona genên çapkirî yên di nûzayikê de [74], bandorek ku tê fikirîn ku bi navbeynkariya guhertinên epigenetîk ên ku di dema spermatogenesisê de hatine bidestxistin ve tête kirin.

zarok di nav giya û heriyê de dimeşeJîngeha piştî zayînê: The epigenome is established de novo during embryonic development, and therefore, the prenatal environment most likely has the most significant impact on the epigenome. However, it is now clear that changes do occur in the �mature� epigenome under the influence of a range of conditions, including aging, exposure to toxins, and dietary alterations. For example, changes in DNA methylation in numerous genes in skeletal muscle and PGC1A in adipose tissue have been demonstrated in response to a high-fat diet [75, 76]. Interventions to lose body fat mass have also been associated with changes in DNA methylation. Studies have reported that the DNA methylation profiles of adipose tissue [43, 64], peripheral blood mononuclear cells [77], and muscle tissue [78] in formerly obese patients become more similar to the profiles of lean subjects following weight loss. Weight loss surgery also partially reversed non-alcoholic fatty liver disease-associated methylation changes in liver [79] and in another study led to hypomethylation of multiple obesity candidate genes, with more pronounced effects in subcutaneous compared to omental (visceral) fat [64]. Accumulating evidence suggests that exercise interventions can also influence DNA methylation. Most of these studies have been conducted in lean individuals [80�82], but one exercise study in obese T2DM subjects also demonstrated changes in DNA methylation, including in genes involved in fatty acid and glucose transport [83]. Epigenetic changes also occur with aging, and recent data suggest a role of obesity in augmenting them [9, 84, 85]. Obesity accelerated the epigenetic age of liver tissue, but in contrast to the findings described above, this effect was not reversible after weight loss [84].

Bi hev re, delîlên piştgirîkirina kapasîteya modulkirina epigenome di mezinan de destnîşan dikin ku dibe ku potansiyela destwerdana di jiyana piştî zayînê de hebe da ku bernamesaziya epigenetîk a neyînî modul bike an berevajî bike.

Mezinahiyên Bandor Û Cûdahiyên Di Navbera Cûreyên Tîsê de

mestirên pêwendîdarGuhertinên metilasyona DNA yên ku bi qelewbûnê ve girêdayî ne an ji hêla parêz an destwerdanên şêwaza jiyanê ve têne çêkirin û kêmbûna giraniyê bi gelemperî nerm in (<15 %), her çend ev li gorî fenotîp û tevna ku hatî lêkolîn kirin diguhere. Mînakî, guhertinên ji %20 mezintir di tevna rûnê de piştî windakirina giraniyê hatine ragihandin [64] û têkiliyên di navbera metilasyona HIF3A û BMI de di tevna rûnê de ji xwînê bêtir diyar bûne [52].

Têkiliya biyolojîkî ya guheztinên mîtîlasyonê yên nisbeten piçûk hatine pirsîn. Lêbelê, di tevnvîsên ku ji tevliheviyek celebên hucreyê pêk tê, guherînek piçûk di metilasyona DNA de dibe ku bi rastî di perçeyek hucreyek taybetî de guhertinek girîng nîşan bide. Yekbûna daneyên epigenome bi transcriptome û daneyên din ên epigenetîk, wek guheztinên hîstone, girîng e, ji ber ku guhertinên piçûk ên methylasyonê ya DNA-yê dibe ku guhertinên mezintir di avahiya kromatînê de nîşan bide û dikare bi guhertinên berfirehtir di vegotina genê de têkildar be. Divê çerçoveya genomî jî were berçav kirin; Guhertinên piçûk ên di hundurê hêmanek rêkûpêk de wekî promotor, bihêzker, an îzolator dibe ku girîngiyek fonksiyonel hebe. Di vî warî de, DMRs ji bo qelewbûnê, û her weha deverên ku ji ber rûdana birçîbûna berî zayînê û meQTL ji bo cîhên taybetmendiya metabolîk bandor bûne, hatine dîtin ku hêmanên bihêzker li hev dikin [8, 43, 68]. Delîl hene ku methîlasyona DNA li herêmên girêdayî birçîbûnê dikare bi rastî bandorê li çalakiya zêdeker bike [68], ku di rêziknameya genê de rolek guheztinên metilasyonê yên ji hêla xwarinê ve hatî çêkirin piştgirî dike.

A major limitation in many human studies is that epigenetic marks are often assessed in peripheral blood, rather than in metabolically relevant tissues (Fig. 2). The heterogeneity of blood is an issue, since different cell populations have distinct epigenetic signatures, but algorithms have been developed to estimate the cellular composition to overcome this problem [86]. Perhaps more importantly, epigenetic marks in blood cells may not necessarily report the status of the tissues of primary interest. Despite this, recent studies have provided clear evidence of a relationship between epigenetic marks in blood cells and BMI. In the case of HIF3A for which the level of methylation (beta-value) in the study population ranged from 0.14�0.52, a 10 % increase in methylation was associated with a BMI increase of 7.8 %�[52]. Likewise, a 10 % difference in PGC1A methylation may predict up to 12 % difference in fat mass [54].

2 figencamên

The study of the role of epigenetics in obesity and metabolic disease has expanded rapidly in recent years, and evidence is accumulating of a link between epigenetic modifications and metabolic health outcomes in humans. Potential epigenetic biomarkers associated with obesity and metabolic health have also emerged from recent studies. The validation of epigenetic marks in multiple cohorts, the fact that several marks are found in genes with a plausible function in obesity and T2DM development, as well as the overlap of epigenetic marks with known obesity and T2DM genetic loci strengthens the evidence that these associations are real. Causality has so far been difficult to establish; however, regardless of whether the associations are causal, the identified epigenetic marks may still be relevant as biomarkers for obesity and metabolic disease risk.

Effect sizes in easily accessible tissues such as blood are small but do seem reproducible despite variation in ethnicity, tissue type, and analysis methods [51]. Also, even small DNA methylation changes may have biological significance. An integrative �omics� approach will be crucial in further unraveling the complex interactions between the epigenome, transcriptome, genome, and metabolic health. Longitudinal studies, ideally spanning multiple generations, are essential to establishing causal relationships. We can expect more such studies in the future, but this will take time.

Dema ku lêkolînên heywanan berdewam dikin ku bandora jiyana destpêkê nîşan bidin tatmînkar bû exposure on the epigenome and metabolic health of the offspring, human data are still limited. However, recent studies have provided clear�evidence that exposure to suboptimal nutrition during specific periods of prenatal development is associated with methylation changes in the offspring and therefore have the potential to influence adult phenotype. Animal studies will be important to verify human findings in a more controlled setting, help determine whether the identified methylation changes have any impact on metabolic health, and unravel the mechanisms underlying this intergenerational/transgenerational epigenetic regulation. The identification of causal mechanisms underlying metabolic memory responses, the mode of transmission of the phenotypic effects into successive generations, the degree of impact and stability of the transmitted trait, and the identification of an overarching and unifying evolutionary context also remain important questions to be addressed. The latter is often encapsulated by the predictive adaptive response hypothesis, i.e., a response to a future anticipated environment that increases fitness of the population. However, this hypothesis has increasingly been questioned as there is limited evidence for increased fitness later in life [87].

Bi kurtahî, encam sozdar in, ji ber ku guheztinên epigenetîk bi tenduristiya metabolê ya mezinan ve girêdayî ne û ew wekî navbeynkarek di navbera guheztina xwarina berî zayînê û dûv re zêdebûna xetereya encamên tenduristiya metabolîk ên belengaz de tevdigerin. Nîşanên epigenetîk ên nû hatine nas kirin ku bi pîvanên tenduristiya metabolîk ve girêdayî ne. Yekbûna qatên cihêreng ên agahdariya genomîk piştgiriyek din li têkiliyên sedemî zêde kiriye, û lêkolînên din jî hene ku bandorên hawîrdora pêş- û piştî zayînê li ser epigenom û tenduristiyê nîşan didin. Digel ku gelek pirsên girîng dimînin, pêşkeftinên metodolojîk ên vê dawiyê cûreyên lêkolînên mezin ên nifûsê yên ku dê ji bo çareserkirina kêmasiyên zanînê hewce ne gengaz bike. Deh salên pêş me soz dide ku di vê qada lêkolînê ya girîng de bibe serdemek çalakiyek mezin.

Susan J. van Dijk1, Ross L. Tellam2, Janna L. Morrison3, Beverly S. Muhlhausler4,5� and Peter L. Molloy1*�

Berjewendiyên pêşbaziyê

Nivîskaran ragihand ku ew neyek berjewendiyên me hene.

Authors� contributions
Hemî nivîskaran beşdarî amadekirin û guhertoya rexneyî ya destnivîsê bûn, û hemî nivîskaran destnivîsa dawî xwendin û pejirandin.

Authors� information
Beverly S. Muhlhausler û Peter L. Molloy nivîskarên dawîn ên hevpar in.

li hev kirin

Ev xebat ji hêla bexşeyek ji Fona Weqfa Zanist û Pîşesaziyê (Grant RP03-064) ve hatî piştgirî kirin. JLM û BSM ji hêla Civata Pêşkeftina Kariyerê ya Encumena Lêkolîna Tenduristî û Bijîjkî ya Neteweyî ve têne piştgirî kirin (JLM, APP1066916; BSM, APP1004211). Em spasiya Lance Macaulay û Sue Mitchell dikin ji bo xwendina rexnegir û şîroveyên li ser destnivîsê.

Agahdariya nivîskar

1CSIRO Food and Nutrition Flagship, PO Box 52, North Ryde, NSW 1670, Australia. 2CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, QLD 4067, Australia. 3Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia�4FOODplus Research Centre, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia. 5Women�s and Children�s Health Research Institute, 72 King William Road, North Adelaide, SA 5006, Australia.

Vala
Çavkanî:

1. WHO. WHO | Zêdebûn û qelewbûn. www.who.int/gho/ncd/
risk_factors/overweight/en/index.html. Accessed 29 January 2015.
2. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery.
Am J Hum Genet. 2012;90:7�24.
3. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic
studies of body mass index yield new insights for obesity biology. Nature.
2015; 518: 197 206.
4. Ling C, Del Guerra S, Lupi R, R�nn T, Granhall C, Luthman H, et al.
Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and
effect on insulin secretion. Diabetologia. 2008;51:615�22.
5. Van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics
and human obesity. Int J Obes (Lond). 2015;39:85�97.
6. Teh AL, Pan H, Chen L, Ong M-L, Dogra S, Wong J, et al. The effect of
genotype and in utero environment on interindividual variation in neonate
DNA methylomes. Genome Res. 2014;24:1064�74.
7. Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, et al. Genomewide
associations between genetic and epigenetic variation influence
mRNA expression and insulin secretion in human pancreatic islets. PLoS
Genet. 2014;10:e1004735.
8. Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, et al.
Global analysis of DNA methylation variation in adipose tissue from twins
reveals links to disease-associated variants in distal regulatory elements.
Am J Hum Genet. 2013;93:876�90.
9. Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, et al.
Impact of age, BMI and HbA1c levels on the genome-wide DNA
methylation and mRNA expression patterns in human adipose tissue
and identification of epigenetic biomarkers in blood. Hum Mol Genet.
2015; 24: 3792 813.
10. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental
origins hypothesis. Annu Rev Nutr. 2007;27:363�88.
11. McMillen IC, Rattanatray L, Duffield JA, Morrison JL, MacLaughlin SM, Gentili
S, et al. The early origins of later obesity: pathways and mechanisms. Adv
Exp Med Biol. 2009;646:71�81.
12. Ravelli A, van der Meulen J, Michels R, Osmond C, Barker D, Hales C, et al.
Glucose tolerance in adults after prenatal exposure to famine. Lancet.
1998; 351: 173 7.
13. McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL,
Morrison JL. Developmental origins of adult health and disease: the role of
periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol.
2008; 102: 82 9.
14. Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL. Periconceptional
nutrition and the early programming of a life of obesity or adversity. Prog
Biophys Mol Biol. 2011;106:307�14.
15. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling
energy and glucose homeostasis and the developmental origins of obesity.
Physiol Rev. 2015;95:47�82.
16. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al.
Maternal obesity enhances white adipose tissue differentiation and alters
genome-scale DNA methylation in male rat offspring. Endocrinology.
2013; 154: 4113 25.
17. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS,
et al. Metabolic plasticity during mammalian development is directionally
dependent on early nutritional status. Proc Natl Acad Sci U S A.
2007; 104: 12796 800.
18. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C,
et al. Epigenetic gene promoter methylation at birth is associated with
child�s later adiposity. Diabetes. 2011;60:1528�34.
19. McMillen IC, Adam CL, Muhlhausler BS. Early origins of obesity:
programming the appetite regulatory system. J Physiol. 2005;565(Pt 1):9�17.
20. Begum G, Stevens A, Smith EB, Connor K, Challis JR, Bloomfield F, et al.
Epigenetic changes in fetal hypothalamic energy regulating pathways are
associated with maternal undernutrition and twinning. FASEB J.
2012; 26: 1694 703.
21. Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY, et al. Maternal obesity
and diabetes may cause DNA methylation alteration in the spermatozoa of
offspring in mice. Reprod Biol Endocrinol. 2014;12:29.
22. Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A, et al.
Perinatal undernutrition affects the methylation and expression of the leptin
gene in adults: implication for the understanding of metabolic syndrome.
FASEB J. 2011;25:3271�8.
23. Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Penagaricano F, et al.
Maternal diet during pregnancy induces gene expression and DNA
methylation changes in fetal tissues in sheep. Front Genet. 2013;4:49.
24. Li CC, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, et al.
Maternal obesity and diabetes induces latent metabolic defects and
widespread epigenetic changes in isogenic mice. Epigenetics. 2013;8:602�11.
25. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein
restriction of pregnant rats induces and folic acid supplementation prevents
epigenetic modification of hepatic gene expression in the offspring. J Nutr.
2005; 135: 1382 6.
26. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero
effects. In utero undernourishment perturbs the adult sperm methylome
and intergenerational metabolism. Science. 2014;345(80):1255903.
27. Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, et al.
Epigenomics: maternal high-fat diet exposure in utero disrupts
peripheral circadian gene expression in nonhuman primates. FASEB J.
2011; 25: 714 26.
28. Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, et al. In utero
exposure to a maternal high-fat diet alters the epigenetic histone code in a
murine model. Am J Obs Gynecol. 2014;210:463 e1�463 e11.
29. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, et al.
Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1
mRNA expression and histone structure in rapid vs. delayed postnatal
catch-up growth. Am J Physiol Gastrointest Liver Physiol.
2010;299:G1023�9.
30. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y,
et al. Maternal diet and aging alter the epigenetic control of a promoterenhancer
interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl
Acad Sci U S A. 2011;108:5449�54.
31. Braunschweig M, Jagannathan V, Gutzwiller A, Bee G. Investigations on
transgenerational epigenetic response down the male line in F2 pigs. PLoS
One. 2012;7, e30583.
32. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally
induced transgenerational environmental reprogramming of metabolic
gene expression in mammals. Cell. 2010;143:1084�96.
33. Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, et al. Paternal diet
defines offspring chromatin state and intergenerational obesity. Cell.
2014; 159: 1352 64.
34. Mart�nez D, Pentinat T, Rib� S, Daviaud C, Bloks VW, Cebri� J, et al. In utero
undernutrition in male mice programs liver lipid metabolism in the secondgeneration
offspring involving altered Lxra DNA methylation. Cell Metab.
2014; 19: 941 51.
35. Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, et al. Paternally
induced transgenerational inheritance of susceptibility to diabetes in
mammals. Proc Natl Acad Sci U S A. 2014;111:1873�8.
36. Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist
S. Transgenerational epigenetic inheritance: how important is it? Nat Rev
Genet. 2013;14:228�35.
37. Pembrey M, Saffery R, Bygren LO. Human transgenerational responses to
early-life experience: potential impact on development, health and
biomedical research. J Med Genet. 2014;51:563�72.
38. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl
supplements affect agouti gene expression in Avy/a mice. FASEB J.
1998; 12: 949 57.
39. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility.
Nat Rev Genet. 2007;8:253�62.
40. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at
the agouti locus in the mouse. Nat Genet. 1999;23:314�8.
41. Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic
modification of the murine A vy allele by nutritional supplementation. Proc
Natl Acad Sci U S A. 2006;103:17308�12.
42. Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC. Dietary protein
restriction during F0 pregnancy in rats induces transgenerational changes in
the hepatic transcriptome in female offspring. PLoS One. 2011;6, e21668.
43. Multhaup ML, Seldin MM, Jaffe AE, Lei X, Kirchner H, Mondal P, et al. Mousehuman
experimental epigenetic analysis unmasks dietary targets and
genetic liability for diabetic phenotypes. Cell Metab. 2015;21:138�49.
44. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al.
Recommendations for the design and analysis of epigenome-wide
association studies. Nat Methods. 2013;10:949�55.
45. Dayeh TA, Olsson AH, Volkov P, Almgren P, R�nn T, Ling C. Identification of
CpG-SNPs associated with type 2 diabetes and differential DNA methylation
in human pancreatic islets. Diabetologia. 2013;56:1036�46.
46. Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a
strategy for establishing the causal role of epigenetic processes in pathways
to disease. Int J Epidemiol. 2012;41:161�76.
47. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.
Epigenome-wide association data implicate DNA methylation as an
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.
2013; 31: 142 7.
48. Yuan W, Xia Y, Bell CG, Yet I, Ferreira T, Ward KJ, et al. An integrated
epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic
twins. Nat Commun. 2014;5:5719.
49. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an
exercise intervention on DNA methylation in skeletal muscle from firstdegree
relatives of patients with type 2 diabetes. Diabetes. 2012;61:3322�32.
50. Gagnon F, A�ssi D, Carri� A, Morange P-E, Tr�gou�t D-A. Robust validation of
methylation levels association at CPT1A locus with lipid plasma levels.
J Lipid Res. 2014;55:1189�91.
51. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou Y-H,
et al. Epigenome-wide association atudy (EWAS) of BMI, BMI change, and
waist circumference in African American adults identifies multiple replicated
loci. Hum Mol Genet. 2015:ddv161�.
52. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, A�ssi D, Wahl S, et al. DNA
methylation and body-mass index: a genome-wide analysis. Lancet.
2014; 6736: 1 9.
53. Su S, Zhu H, Xu X, Wang X, Dong Y, Kapuku G, et al. DNA methylation of
the LY86 gene is associated with obesity, insulin resistance, and
inflammation. Twin Res Hum Genet. 2014;17:183�91.
54. Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS, et al.
PGC1? promoter methylation in blood at 5�7 years predicts adiposity from
9 to 14 years (EarlyBird 50). Diabetes. 2014;63:2528�37.
55. Guay S-P, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, et al.
ADRB3 gene promoter DNA methylation in blood and visceral adipose
tissue is associated with metabolic disturbances in men. Epigenomics.
2014; 6: 33 43.
56. Agha G, Houseman EA, Kelsey KT, Eaton CB, Buka SL, Loucks EB. Adiposity is
associated with DNA methylation profile in adipose tissue. Int J Epidemiol.
2014: 1 11.
57. Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, et al.
Epigenome-wide association study of fasting blood lipids in the genetics of
lipid-lowering drugs and diet network study. Circulation. 2014;130:565�72.
58. Frazier-Wood AC, Aslibekyan S, Absher DM, Hopkins PN, Sha J, Tsai MY, et al.
Methylation at CPT1A locus is associated with lipoprotein subfraction
profiles. J Lipid Res. 2014;55:1324�30.
59. Pfeifferm L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA
methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc
Genet. 2015.
60. Petersen A-K, Zeilinger S, Kastenm�ller G, R�misch-Margl W, Brugger M, Peters
A, et al. Epigenetics meets metabolomics: an epigenome-wide association
study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534�45.
61. Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al. Epigenomewide
association study of fasting measures of glucose, insulin, and HOMA-IR
in the genetics of lipid lowering drugs and diet network study. Diabetes.
2014; 63: 801 7.
62. Dayeh T, Volkov P, Sal� S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide
DNA methylation analysis of human pancreatic islets from type 2 diabetic
and non-diabetic donors identifies candidate genes that influence insulin
secretion. PLoS Genet. 2014;10, e1004160.
63. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, et al.
Altered DNA methylation and differential expression of genes influencing
metabolism and inflammation in adipose tissue from subjects with type 2
diabetes. Diabetes. 2014;63:2962�76.
64. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight
loss. Gene. 2015;16:1�21.
65. Bateson P, Gluckman P. Plasticity and robustness in development and
evolution. Int J Epidemiol. 2012;41:219�23.
66. Feinberg AP, Irizarry RA, Feinberg AP, Irizarry RA. Evolution in health and
medicine Sackler colloquium: stochastic epigenetic variation as a driving
force of development, evolutionary adaptation, and disease. Proc Natl Acad
Sci U S A. 2010;107(Suppl):1757�64.
67. Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, et al.
Longitudinal, genome-scale analysis of DNA methylation in twins from birth
to 18 months of age reveals rapid epigenetic change in early life and pairspecific
effects of discordance. Genome Biol. 2013;14:R42.
68. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA
methylation signatures link prenatal famine exposure to growth and
metabolism. Nat Commun. 2014;5:5592.
69. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al.
Maternal nutrition at conception modulates DNA methylation of human
metastable epialleles. Nat Commun. 2014;5:3746.
70. Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al.
Impact on offspring methylation patterns of maternal gestational diabetes
mellitus and intrauterine growth restraint suggest common genes and
pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014:1�12.
71. Morales E, Groom A, Lawlor DA, Relton CL. DNA methylation signatures in
cord blood associated with maternal gestational weight gain: results from
the ALSPAC cohort. BMC Res Notes. 2014;7:278.
72. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al.
Gestational diabetes mellitus epigenetically affects genes predominantly
involved in metabolic diseases. Epigenetics. 2013;8:935�43.
73. Liu X, Chen Q, Tsai H-J, Wang G, Hong X, Zhou Y, et al. Maternal
preconception body mass index and offspring cord blood DNA
methylation: exploration of early life origins of disease. Environ Mol
Mutagen. 2014;55:223�30.
74. Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, et al.
Newborns of obese parents have altered DNA methylation patterns at
imprinted genes. Int J Obes (Lond). 2015;39:650�7.
75. Jacobsen SC, Br�ns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al.
Effects of short-term high-fat overfeeding on genome-wide DNA
methylation in the skeletal muscle of healthy young men. Diabetologia.
2012; 55: 3341 9.
76. Gillberg L, Jacobsen SC, R�nn T, Br�ns C, Vaag A. PPARGC1A DNA
methylation in subcutaneous adipose tissue in low birth weight subjects�
impact of 5 days of high-fat overfeeding. Metabolism. 2014;63:263�71.
77. Huang Y-T, Maccani JZJ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM.
Epigenetic patterns in successful weight loss maintainers: a pilot study. Int J
Obes (Lond). 2015;39:865�8.
78. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, N�slund E,
Zierath JR. Weight loss after gastric bypass surgery in human obesity
remodels promoter methylation. Cell Rep. 2013:1�8.
79. Ahrens M, Ammerpohl O, von Sch�nfels W, Kolarova J, Bens S, Itzel T, et al.
DNA methylation analysis in nonalcoholic fatty liver disease suggests
distinct disease-specific and remodeling signatures after bariatric surgery.
Cell Metab. 2013;18:296�302.
80. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation
in humans. Acta Physiol (Oxf). 2014;213:39�59.
81. Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekstr�m TJ,
Tegn�r J, et al. An integrative analysis reveals coordinated reprogramming
of the epigenome and the transcriptome in human skeletal muscle after
training. Epigenetics. 2014;9:1557�69.
82. Denham J, O�Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte
methylome and its effect on cardiovascular related genes after exercise.
J Appl Physiol. 2014:jap.00878.2014.
83. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, et al.
Multi-omic integrated networks connect DNA methylation and miRNA with
skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity.
Physiol Genomics. 2014;46:747�65.
84. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M,
et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad
Sci. 2014;111:15538�43.
85. Alm�n MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al.
Genome-wide analysis reveals DNA methylation markers that vary with
both age and obesity. Gene. 2014.;548:61�7
86. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments
in analysis of DNA methylation data. Bioinformatics. 2014;30:1431�9.
87. Wells JC. A critical appraisal of the predictive adaptive response hypothesis.
Int J Epidemiol. 2012;41:229�35.
88. Williams-Wyss O, Zhang S, MacLaughlin SM, Kleemann D, Walker SK, Suter
CM, et al. Embryo number and periconceptional undernutrition in the
sheep have differential effects on adrenal epigenotype, growth, and
development. Am J Physiol Endocrinol Metab. 2014;307:E141�50.
89. Zhang S, Rattanatray L, Morrison JL, Nicholas LM, Lie S, McMillen IC.
Maternal obesity and the early origins of childhood obesity: weighing up
the benefits and costs of maternal weight loss in the periconceptional
period for the offspring. Exp Diabetes Res. 2011;2011:585749.
90. Zhang S, Williams-Wyss O, MacLaughlin SM, Walker SK, Kleemann DO, Suter
CM, et al. Maternal undernutrition during the first week after conception
results in decreased expression of glucocorticoid receptor mRNA in the
absence of GR exon 17 hypermethylation in the fetal pituitary in late
gestation. J Dev Orig Heal Dis. 2013;4:391�401.
91. Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE,
et al. Periconceptional undernutrition programs changes in insulin-signaling
molecules and microRNAs in skeletal muscle in singleton and twin fetal
sheep. Biol Reprod. 2014;90:5.
92. Van Straten EM, van Meer H, Huijkman NC, van Dijk TH, Baller JF, Verkade
HJ, et al. Fetal liver X receptor activation acutely induces lipogenesis but
does not affect plasma lipid response to a high-fat diet in adult mice. Am J
Physiol Endocrinol Metab. 2009;297:E1171�8.
93. Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes
DE, Piekarz A, Ferland-McCollough D, et al. Downregulation of IRS-1 in
adipose tissue of offspring of obese mice is programmed cellautonomously
through post-transcriptional mechanisms. Mol Metab.
2014; 3: 325 33.
94. Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at
agouti viable yellow is not inherited transgenerationally through the female.
FASEB J. 2007;21:3380�5.
95. Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, et al. DNA methylation in
oocytes and liver of female mice and their offspring: effects of high-fat-dietinduced
obesity. Env Heal Perspect. 2014;122:159�64.
96. Ollikainen M, Ismail K, Gervin K, Kyll�nen A, Hakkarainen A, Lundbom J, et al.
Genome-wide blood DNA methylation alterations at regulatory elements
and heterochromatic regions in monozygotic twins discordant for obesity
and liver fat. Clin Epigenetics. 2015;7:1�13.

Accordion Close